Top Lyapunov exponent of inertial particle pair separation
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If the velocity field @ is a 2D smooth Kraichnan field, then some
exact results can be given.
In this model o(t) is a matrix-valued Gaussian white noise:
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Notice that V is driven by the noise %O’R.
— Gaussian white noise in R?: only its covariance matters

— Replace o with 7; in d = 2:
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Noticing that o is also the matrix notation of the complex multi-

plication by:
0 =/ Brm + i/ P

pass to complex notation also for R V.

Alternative forms: introduce U = g and F = — 13
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2 special cases with explicit formula for Lyapunov exponent

Gy =0 O = % (or pure dilatation)

U real — problem reduces to real Anderson equation
(not completely trivial, since initially R }f V)
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2T Ai%(c) + Bi*(c)
1
c = 273 Ai, Bi: Airy functions
()
2
b =0 ¢ = —% (or pure rotation)

In the holomorphic writing, equilibrium distribution of z is sup-

ported by half-plane £z > % so that the “complex” Laplace

transform (e77*), p € R, is well defined
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Other solvable cases if we allow for

C =

e breaking of spatial homogeneity of velocity field:
— only homogenous increments

e breaking of parity invariant statistics



Adimensionalized Lyapunov exponent in function of Stokes number
at different values of compressibility degree @
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Relative error of numerical results with respect to the “analytical”
formula , for o < 1/2. A zoom (not represented) on the curves
for very small St is not incompatible with the prediction that all
derivatives of the relative error curves should vanish at St = 0, but
quality of our data in that range is too poor.
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Numerical simulations

— A\ seems monotone with ¢

=for0<p<1:As <A, <A

~ 775 —validforall A, 0 < p < 1
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notice: )\%,)\
— )\ goes to passive tracer Lyapunov as 7 — 0

— For 7 large enough, A > 0 always!

Difficulty of simulation: stiffness

2 is a large parameter when 7 is small

DT
To overcome this, write:

d <§> = (8 _1%> <§> d (O(t)%@))
R

(0)

— Linear system with constant coefficient
= can be solved exactly over a time-step



Asymptotic analysis

Consider regime of A7 > 1, do self-consistent analysis
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The simplified equation reads
2R 03
de2 7
Now dimensional analysis is possible,
the only paramter is D'/? /7.
[DV? /7] = T3 D] =T""

whence

A\ o <D1/2/7_>2/3 _ D1/3’7'_2/3

Self consistent when A7 oc (D7)V/3 = §t1/3 > 1.



Positive even order moments of pair separation

Start by recalling
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Then for any n the ¢!, verify the closed system
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Application to real turbulence within Kolmogorov phenomenology

We consider heavy particles, ie. 7/t, = St > 1.

Inertial drift velocity wi(t) = v(t) — u(r(t), t).

By dimensional analysis w o< /eT. more explicit arguments are
also possible Note also that w changes on the timescale 7.
Important timescale: 7/w, traversal time of Kolmogorov scale by
inertial particle

~ T2 = (r/t,) = St > 1
njw 1
Start from ~ ~
d2R n 1dR B O'R»
Atz rdt T

This equation can be averaged over time interval At.
If At << A7 ! then only o is averaged. Note that is a self-consistency
condition that ultimately needs to be checked.

Interesting case is when we average a large number of independent
0.



Simplest case St'/? >> 1.
Take n/w < At < t, < 7. Velocity field is effectively frozen
during At and w is constant.

) t+At dt/ Ny / t+At dt/ - / ~
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g;; will be Gaussian as average of a large number of independent
elements. — As usual we deduce the diffusion coefficient of the
equivalent white noise as
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One can derive D and C' from the 2-pt structure function of the
velocity field under the hypotheses of incompressibility and isotropy:
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Special degeneracy
C'ijmn has a special degeneracy:

ZnCiimn(2) =0

consequently also 2;C;jmn(2) = 0 because Cjjmn = Chnij

Indeed

5,Clinn = / dt%vjum)um(tz» —0

wi(oii(t1)Tmn(te)) = 0 for any 7, m and n
one can set o;;w; = 0

no local stretching in the direction of w

Ll

evolution of components of ﬁ, V transverse to 17 is independent

of longitudinal ones, described by isotropic d — 1 dimensional
Kraichnan model! (with D = Dw ' and ¢ = 0)

— if A > 7! then Ak, should be the “real” Lyapunov exponent

In general at large t

'
/ Viu(tw)dt' [t ~ t71/?
0
due to short-correlated increments. However
'
/ B - V(')A Jt = [ug(th) — i (0)] /1 ~ 123 < 1112
0

Subdiffusive growth can be explained by the anti-correlation of the
relevant increments (similar to the situation holding for fractional
Brownian motion with Hurst exponent less than 1/2). This special
smallness then produces zero in the considered order of approxima-
tion that corresponds to white-noise description.



Asymptotic analysis

Consider again regime of \7 > 1

As above. we have \ oc D/372/3

However now D = Dw ™' oc 772 (D indep. of 7)

N \ oc DY/3¢1/6,.-5/6

Self consistent when A7 oc D3¢ 1/671/6 o g¢l/6 s 1.



