Top Lyapunov exponent of inertial particle pair separation

Horvai, Gawedzki, Fouxon, ...

Inertial particle:

$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{v} \qquad \qquad \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -\frac{1}{\tau}[\vec{v} - \vec{u}(\vec{r}, t)]$$

Inertial particle pair separation:

$$\begin{split} \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} &= \vec{V} & \frac{\mathrm{d}\vec{V}}{\mathrm{d}t} = -\frac{1}{\tau} [\vec{V} - \sigma(t)\vec{R}] \\ &\nearrow \\ \text{strain matrix of velocity field} \\ &\sigma_{ij}(t) = \partial_j u_i((\vec{r}(t), t)) \end{split}$$

If the velocity field \vec{u} is a 2D smooth Kraichnan field, then some exact results can be given.

In this model $\sigma(t)$ is a matrix-valued Gaussian white noise:

$$\begin{array}{l} \langle \sigma_{ij}(t)\sigma_{mn}(t')\rangle = \delta(t-t') \, C_{ijmn} = \delta(t-t') \, 2D \, \tilde{C}_{ijmn} \\ \\ \tilde{C}_{ijmn} = (d+1-2\wp)\delta_{im}\delta_{jn} + (\wp d-1)(\delta_{ij}\delta_{mn} + \delta_{in}\delta_{mj}) \\ \\ \swarrow \\ \\ \wp: \text{ compressibility degree} \\ \\ \sqrt{\wp} \text{ potential field } + \sqrt{1-\wp} \text{ solenoidal field} \end{array}$$

Notice that \vec{V} is driven by the noise $\frac{1}{\tau}\sigma\vec{R}$.

 \rightarrow Gaussian white noise in \mathbb{R}^d : only its covariance matters \rightarrow Replace σ with $\tilde{\sigma}$; in d = 2:

$$\tilde{\sigma} = \begin{pmatrix} \sqrt{\beta_L} \eta_1 & -\sqrt{\beta_N} \eta_2 \\ \sqrt{\beta_N} \eta_2 & -\sqrt{\beta_L} \eta_1 \end{pmatrix} \qquad \beta_L = \frac{2D}{\tau^2} (2\wp + 1) \\ \beta_N = \frac{2D}{\tau^2} (3 - 2\wp)$$

Noticing that $\tilde{\sigma}$ is also the matrix notation of the complex multiplication by:

$$\tilde{\sigma} = \sqrt{\beta_L} \eta_1 + i \sqrt{\beta_N} \eta_2$$

pass to complex notation also for \vec{R} , \vec{V} .

Alternative forms: introduce a

introduce $\mathcal{U} = \frac{\tilde{\sigma}}{\tau}$ and $E = -\frac{1}{4\tau^2}$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = -z^2 - E + \mathcal{U} \qquad \qquad z = \frac{V}{R} + \frac{1}{2\tau} \\ -\frac{\mathrm{d}^2\psi}{\mathrm{d}t^2} + \mathcal{U}\psi = E\psi \qquad \qquad \psi = e^{\frac{t}{2\tau}}R$$

Lyapunov exponent:

$$\lambda = \left\langle \frac{\mathrm{d}\log R}{\mathrm{d}t} \right\rangle = \left\langle z \right\rangle - \frac{1}{2\tau} = \left\langle \frac{\mathrm{d}\log\psi}{\mathrm{d}t} \right\rangle - \frac{1}{2\tau}$$

2 special cases with explicit formula for Lyapunov exponent

 $\underline{\beta_N = 0}$ $\wp = \frac{3}{2}$ (or pure dilatation)

 \mathcal{U} real \rightarrow problem reduces to real Anderson equation (not completely trivial, since initially $\vec{R} \not\parallel \vec{V}$)

$$\lambda = \frac{1}{2\tau} \left[-1 + c^{-\frac{1}{2}} \frac{Ai'(c)Ai(c) + Bi'(c)Bi(c)}{Ai^2(c) + Bi^2(c)} \right]$$
$$c = \frac{1}{4\tau^2 \left(\frac{\beta_L}{2}\right)^{2/3}} \qquad Ai, Bi: \text{ Airy functions}$$

 $\underline{eta_L=0}$ $\wp=-rac{1}{2}$ (or pure rotation)

In the holomorphic writing, equilibrium distribution of z is supported by half-plane $\Re z > \frac{1}{2\tau}$, so that the "complex" Laplace transform $\langle e^{-pz} \rangle$, $p \in \mathbb{R}_+$ is well defined

$$\lambda = \frac{1}{2\tau} \left[-1 - c^{-\frac{1}{2}} \frac{Ai'(c)}{Ai(c)} \right]$$
$$c = \frac{1}{4\tau^2 \left(\frac{\beta_N}{2}\right)^{2/3}}$$

Other solvable cases if we allow for

- breaking of spatial homogeneity of velocity field:
 → only homogenous *increments*
- breaking of parity invariant statistics

Adimensionalized Lyapunov exponent in function of Stokes number at different values of compressibility degree \wp

Relative error of numerical results with respect to the "analytical" formula , for $\wp < 1/2$. A zoom (not represented) on the curves for very small St is not incompatible with the prediction that all derivatives of the relative error curves should vanish at St = 0, but quality of our data in that range is too poor.

Non-collapse of numeric curves for $\wp > 1/2$

Numerical simulations

 $\rightarrow \lambda \text{ seems monotone with } \wp$ $\Rightarrow \text{ for } 0 \leq \wp \leq 1: \ \lambda_{\frac{3}{2}} < \lambda_{\wp} < \lambda_{-\frac{1}{2}}$ $\text{ notice: } \lambda_{\frac{3}{2}}, \lambda_{-\frac{1}{2}} \sim \tau^{-\frac{2}{3}} \rightarrow \text{ valid for all } \lambda_{\wp}, \ 0 \leq \wp \leq 1$ $\rightarrow \lambda \text{ goes to passive tracer Lyapunov as } \tau \rightarrow 0$ $\rightarrow \text{ For } \tau \text{ large enough, } \lambda > 0 \text{ always!}$ $\underline{\text{Difficulty of simulation: stiffness}} \\ \frac{1}{D\tau} \text{ is a large parameter when } \tau \text{ is small} \\ \text{ To overcome this, write:} \\ d\left(\begin{matrix} \vec{R} \\ \vec{V} \end{matrix}\right) = \begin{pmatrix} 0 & 1 \\ 0 & -\frac{1}{\tau} \end{pmatrix} \begin{pmatrix} \vec{R} \\ \vec{V} \end{pmatrix} dt + \begin{pmatrix} 0 \\ \sigma(t)\vec{R}(t) \end{pmatrix} \\ \vec{R}(0) \end{cases}$

 \rightarrow Linear system with <u>constant</u> coefficient \Rightarrow can be solved exactly over a time-step

Asymptotic analysis

Consider regime of $\lambda \tau \gg 1$, do self-consistent analysis

$$\frac{\mathrm{d}^{2}\vec{R}}{\mathrm{d}t^{2}} + \frac{1}{\tau}\frac{\mathrm{d}\vec{R}}{\mathrm{d}t} = \frac{\sigma}{\tau}\vec{R}$$
$$\uparrow \qquad \uparrow$$
$$\lambda^{2}R \gg \frac{\lambda}{\tau}R$$

The simplified equation reads

$$\frac{\mathrm{d}^2 \vec{R}}{\mathrm{d} t^2} = \frac{\sigma}{\tau} \vec{R}$$

Now dimensional analysis is possible, the only paramter is $D^{1/2}/\tau$.

$$[D^{1/2}/\tau] = T^{-3/2} \qquad [D] = T^{-1}$$

whence

$$\lambda \propto (D^{1/2}/\tau)^{2/3} = D^{1/3}\tau^{-2/3}$$

Self consistent when $\lambda \tau \propto (D\tau)^{1/3} = St^{1/3} \gg 1$.

Positive even order moments of pair separation

Start by recalling

$$-\frac{\mathrm{d}^2\psi}{\mathrm{d}t^2} + \mathcal{U}\psi = E\psi$$

Introduce

$$c_{k,l}^n = \langle \psi^k \dot{\psi}^{n-k} \bar{\psi}^l \dot{\psi}^{n-l} \rangle \qquad \quad \langle |\psi|^{2n} \rangle = c_{n,n}^n$$

Then for any n the $\boldsymbol{c}_{k,l}^n$ verify the closed system

$$\frac{\mathrm{d}c_{k,l}^{n}}{\mathrm{d}t} = kc_{k-1,l}^{n} - E(n-k)c_{k+1,l}^{n} + lc_{k,l-1}^{n} - E(n-l)c_{k,l+1}^{n} + \frac{(n-k)(n-k-1)}{2}(\beta_{L} - \beta_{N})c_{k+2,l}^{n} + \frac{(n-l)(n-l-1)}{2}(\beta_{L} - \beta_{N})c_{k,l+2}^{n} + (n-k)(n-l)(\beta_{L} + \beta_{N})c_{k+1,l+1}^{n}$$

Application to real turbulence within Kolmogorov phenomenology

We consider heavy particles, ie. $\tau/t_{\eta} = St \gg 1$. Inertial drift velocity $\vec{w}(t) = \vec{v}(t) - \vec{u}(\vec{r}(t), t)$.

By dimensional analysis $w \propto \sqrt{\epsilon \tau}$ more explicit arguments are also possible Note also that w changes on the timescale τ .

Important timescale: η/w , traversal time of Kolmogorov scale by inertial particle

$$\frac{t_{\eta}}{\eta/w} \sim \frac{t_{\eta} \epsilon^{1/2}}{\eta} \tau^{1/2} = (\tau/t_{\eta})^{1/2} = St^{1/2} > 1$$

Start from

$$\frac{\mathrm{d}^2 \vec{R}}{\mathrm{d}t^2} + \frac{1}{\tau} \frac{\mathrm{d} \vec{R}}{\mathrm{d}t} = \frac{\sigma}{\tau} \vec{R}$$

This equation can be averaged over time interval Δt .

If $\Delta t \ll \lambda^{-1}$ then only σ is averaged. Note that is a self-consistency condition that ultimately needs to be checked.

Interesting case is when we average a large number of independent σ .

Simplest case $St^{1/2} \gg 1$. Take $\eta/w \ll \Delta t \ll t_{\eta} \ll \tau$. Velocity field is effectively frozen during Δt and w is constant.

$$\bar{\sigma}_{ij} = \int_{t}^{t+\Delta t} \frac{\mathrm{d}t'}{\Delta t} \sigma_{ij}(\vec{r}(t'), t') = \int_{t}^{t+\Delta t} \frac{\mathrm{d}t'}{\Delta t} \sigma_{ij}(\underbrace{\vec{r}(t) + (t'-t)\vec{w}}_{=\vec{r}(t')}, t) + \underbrace{\sigma_{ij}(\vec{r}(t) + (t'-t)\vec{w}}_{=\vec{r}(t'$$

 $\bar{\sigma}_{ij}$ will be Gaussian as average of a large number of independent elements. \rightarrow As usual we deduce the diffusion coefficient of the equivalent white noise as

$$C_{ijmn} = \int_{-\infty}^{\infty} \mathrm{d}t' \left\langle \sigma_{ij}(\vec{0}, 0) \sigma_{mn}(t'\vec{w}, 0) \right\rangle = 2\tilde{D}w^{-1}\tilde{C}_{ijmn}(\hat{w})$$

One can derive \tilde{D} and \tilde{C} from the 2-pt structure function of the velocity field under the hypotheses of incompressibility and isotropy:

$$\tilde{D} = \frac{1}{2(d-1)} \int_0^\infty \frac{S_2(r)}{r^2} \,\mathrm{d}r$$

$$\begin{split} \tilde{C}_{ijmn}(\hat{w}) &= d\delta_{im}(\delta_{jn} - \hat{w}_j \hat{w}_n) - \delta_{ij} \delta_{mn} - \delta_{in} \delta_{mj} \\ &- 3 \hat{w}_i \hat{w}_j \hat{w}_m \hat{w}_n + \hat{w}_i \hat{w}_m \delta_{jn} + \hat{w}_i \hat{w}_j \delta_{mn} + \hat{w}_m \hat{w}_j \delta_{in} \\ &+ \hat{w}_i \hat{w}_n \delta_{mj} + \hat{w}_m \hat{w}_n \delta_{ij} \end{split}$$

Special degeneracy

 C_{ijmn} has a special degeneracy:

$$\hat{z}_n C_{ijmn}(\hat{z}) = 0$$

consequently also $\hat{z}_j C_{ijmn}(\hat{z}) = 0$ because $C_{ijmn} = C_{mnij}$ Indeed

$$\hat{z}_n C_{ijmn} = \int_{-\infty}^{\infty} dt \frac{\partial}{\partial t} \langle \nabla_j u_i(\vec{0}) u_m(t\hat{z}) \rangle = 0$$

 $\rightarrow w_j \langle \sigma_{ij}(t_1) \sigma_{mn}(t_2) \rangle = 0 \text{ for any } i, m \text{ and } n$ $\rightarrow \text{ one can set } \sigma_{mn}(t_2) = 0$

$$\rightarrow$$
 one can set $\sigma_{ij}w_j = 0$

- ightarrow no local stretching in the direction of ec w
- \rightarrow evolution of components of \vec{R}, \vec{V} transverse to \vec{w} is independent of longitudinal ones, described by isotropic d-1 dimensional Kraichnan model! (with $D = \tilde{D}w^{-1}$ and $\wp = 0$)
- $ightarrow \,$ if $\lambda_{
 m Kr} \gg au^{-1}$ then $\lambda_{
 m Kr}$ should be the "real" Lyapunov exponent In general at large t

$$\int_0^t \nabla_j u_i(t'\hat{w}) dt'/t \sim t^{-1/2}$$

due to short-correlated increments. However

 $\int_{0}^{t} \hat{w} \cdot \nabla u_{i}(t'\hat{w}) dt'/t = [u_{i}(t\hat{w}) - u_{i}(\vec{0})]/t \sim t^{-2/3} \ll t^{-1/2}$

Subdiffusive growth can be explained by the anti-correlation of the relevant increments (similar to the situation holding for fractional Brownian motion with Hurst exponent less than 1/2). This special smallness then produces zero in the considered order of approximation that corresponds to white-noise description.

Self consistent when $\lambda \tau \propto \tilde{D}^{1/3} \epsilon^{-1/6} \tau^{1/6} \sim S t^{1/6} \gg 1$.