
Top Lyapunov exponent of inertial particle pair separation

Horvai, Gawedzki, Fouxon, ...

Inertial particle:

d~r

dt
= ~v

d~v

dt
= −1

τ
[~v − ~u(~r, t)]

↖
Stokes time

Inertial particle pair separation:

d~R

dt
= ~V

d~V

dt
= −1

τ
[~V−σ(t)~R]

↗
strain matrix of velocity field

σij(t) = ∂jui((~r(t), t)

If the velocity field ~u is a 2D smooth Kraichnan field, then some
exact results can be given.
In this model σ(t) is a matrix-valued Gaussian white noise:

〈σij(t)σmn(t′)〉 = δ(t− t′)Cijmn = δ(t− t′) 2D C̃ijmn

C̃ijmn = (d + 1− 2℘)δimδjn + (℘d− 1)(δijδmn + δinδmj)

↗
℘: compressibility degree

√
℘ potential field +

√
1− ℘ solenoidal field



Notice that ~V is driven by the noise 1
τσ
~R.

→ Gaussian white noise in Rd: only its covariance matters

→ Replace σ with σ̃; in d = 2:

σ̃ =

(√
βLη1 −

√
βNη2

√
βNη2 −

√
βLη1

)
βL = 2D

τ2 (2℘ + 1)

βN = 2D
τ2 (3− 2℘)

Noticing that σ̃ is also the matrix notation of the complex multi-
plication by:

σ̃ =
√
βLη1 + i

√
βNη2

pass to complex notation also for ~R, ~V .

Alternative forms: introduce U = σ̃
τ and E = − 1

4τ2

dz

dt
= −z2 − E + U z =

V

R
+

1

2τ

− d2ψ

dt2
+ Uψ = Eψ ψ = e

t
2τR

Lyapunov exponent:

λ =
〈d logR

dt

〉
= 〈z〉 − 1

2τ
=
〈d logψ

dt

〉
− 1

2τ



2 special cases with explicit formula for Lyapunov exponent

βN = 0 ℘ = 3
2 (or pure dilatation)

U real → problem reduces to real Anderson equation
(not completely trivial, since initially ~R ∦ ~V )

λ =
1

2τ

[
−1 + c−

1
2
Ai′(c)Ai(c) +Bi′(c)Bi(c)

Ai2(c) +Bi2(c)

]
c =

1

4τ 2
(
βL
2

)2/3
Ai, Bi : Airy functions

βL = 0 ℘ = −1
2 (or pure rotation)

In the holomorphic writing, equilibrium distribution of z is sup-
ported by half-plane <z > 1

2τ , so that the “complex” Laplace
transform 〈e−pz〉, p ∈ R+ is well defined

λ =
1

2τ

[
−1− c−

1
2
Ai′(c)

Ai(c)

]
c =

1

4τ 2
(
βN
2

)2/3

Other solvable cases if we allow for

• breaking of spatial homogeneity of velocity field:
→ only homogenous increments

• breaking of parity invariant statistics



Adimensionalized Lyapunov exponent in function of Stokes number
at different values of compressibility degree ℘
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Relative error of numerical results with respect to the “analytical”
formula , for ℘ < 1/2. A zoom (not represented) on the curves
for very small St is not incompatible with the prediction that all
derivatives of the relative error curves should vanish at St = 0, but
quality of our data in that range is too poor.
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Numerical simulations

→ λ seems monotone with ℘
⇒ for 0 ≤ ℘ ≤ 1: λ3

2
< λ℘ < λ−1

2

notice: λ3
2
, λ−1

2
∼

τ→∞
τ−

2
3 → valid for all λ℘, 0 ≤ ℘ ≤ 1

→ λ goes to passive tracer Lyapunov as τ → 0

→ For τ large enough, λ > 0 always!

Difficulty of simulation: stiffness
1
Dτ is a large parameter when τ is small
To overcome this, write:

d

(
~R
~V

)
=

(
0 1
0 −1

τ

)(
~R
~V

)
dt +

(
0

σ(t)~R(t)

)
/

~R(0)

→ Linear system with constant coefficient
⇒ can be solved exactly over a time-step



Asymptotic analysis

Consider regime of λτ � 1, do self-consistent analysis

d2 ~R

dt2
+

1

τ

d~R

dt
=
σ

τ
~R

↑ ↑

λ2R � λ

τ
R

The simplified equation reads

d2 ~R

dt2
=
σ

τ
~R

Now dimensional analysis is possible,
the only paramter is D1/2/τ .

[D1/2/τ ] = T−3/2 [D] = T−1

whence
λ ∝ (D1/2/τ )2/3 = D1/3τ−2/3

Self consistent when λτ ∝ (Dτ )1/3 = St1/3 � 1.



Positive even order moments of pair separation

Start by recalling

−d2ψ

dt2
+ Uψ = Eψ

Introduce

cnk,l = 〈ψkψ̇n−kψ̄l ˙̄ψn−l〉 〈|ψ|2n〉 = cnn,n

Then for any n the cnk,l verify the closed system

dcnk,l
dt

= kcnk−1,l − E(n− k)cnk+1,l

+ lcnk,l−1 − E(n− l)cnk,l+1

+ (n−k)(n−k−1)
2 (βL − βN)cnk+2,l

+ (n−l)(n−l−1)
2 (βL − βN)cnk,l+2

+ (n− k)(n− l)(βL + βN)cnk+1,l+1



Application to real turbulence within Kolmogorov phenomenology

We consider heavy particles, ie. τ/tη = St � 1.
Inertial drift velocity ~w(t) = ~v(t)− ~u(~r(t), t).
By dimensional analysis w ∝

√
ετ . more explicit arguments are

also possible Note also that w changes on the timescale τ .
Important timescale: η/w, traversal time of Kolmogorov scale by
inertial particle

tη
η/w

∼ tηε
1/2

η
τ 1/2 = (τ/tη)

1/2 = St1/2 > 1

Start from
d2 ~R

dt2
+

1

τ

d~R

dt
=
σ

τ
~R

This equation can be averaged over time interval ∆t.
If ∆t� λ−1 then only σ is averaged. Note that is a self-consistency
condition that ultimately needs to be checked.
Interesting case is when we average a large number of independent
σ.



Simplest case St1/2 ≫ 1.
Take η/w � ∆t � tη � τ . Velocity field is effectively frozen
during ∆t and w is constant.

σ̄ij =

∫ t+∆t

t

dt′

∆t
σij(~r(t

′), t′) =

∫ t+∆t

t

dt′

∆t
σij(~r(t) + (t′ − t)~w︸ ︷︷ ︸

=~r(t′)

, t)

↑
σ(·,t′)=σ(·,t)

σ̄ij will be Gaussian as average of a large number of independent
elements. → As usual we deduce the diffusion coefficient of the
equivalent white noise as

Cijmn =

∫ ∞

−∞
dt′ 〈σij(~0, 0)σmn(t

′ ~w, 0)〉 = 2D̃w−1C̃ijmn(ŵ)

One can derive D̃ and C̃ from the 2-pt structure function of the
velocity field under the hypotheses of incompressibility and isotropy:

D̃ =
1

2(d− 1)

∫ ∞

0

S2(r)

r2
dr

C̃ijmn(ŵ) = dδim(δjn − ŵjŵn)− δijδmn − δinδmj
− 3ŵiŵjŵmŵn + ŵiŵmδjn + ŵiŵjδmn + ŵmŵjδin
+ ŵiŵnδmj + ŵmŵnδij



Special degeneracy
Cijmn has a special degeneracy:

ẑnCijmn(ẑ) = 0

consequently also ẑjCijmn(ẑ) = 0 because Cijmn = Cmnij
Indeed

ẑnCijmn =

∫ ∞

−∞
dt
∂

∂t
〈∇jui(~0)um(tẑ)〉 = 0

→ wj〈σij(t1)σmn(t2)〉 = 0 for any i, m and n

→ one can set σijwj = 0

→ no local stretching in the direction of ~w

→ evolution of components of ~R, ~V transverse to ~w is independent
of longitudinal ones, described by isotropic d − 1 dimensional
Kraichnan model! (with D = D̃w−1 and ℘ = 0)

→ if λKr � τ−1 then λKr should be the “real” Lyapunov exponent

In general at large t∫ t

0

∇jui(t
′ŵ)dt′/t ∼ t−1/2

due to short-correlated increments. However∫ t

0

ŵ · ∇ui(t′ŵ)dt′/t = [ui(tŵ)− ui(~0)]/t ∼ t−2/3 � t−1/2

Subdiffusive growth can be explained by the anti-correlation of the
relevant increments (similar to the situation holding for fractional
Brownian motion with Hurst exponent less than 1/2). This special
smallness then produces zero in the considered order of approxima-
tion that corresponds to white-noise description.



Asymptotic analysis
Consider again regime of λτ � 1
As above, we have λ ∝ D1/3τ−2/3

However now D = D̃w−1 ∝ τ−1/2 (D̃ indep. of τ )

→ λ ∝ D̃1/3ε−1/6τ−5/6

Self consistent when λτ ∝ D̃1/3ε−1/6τ 1/6 ∼ St1/6 � 1.


