Hamilton-Bellman-Jacobi equation

1 Non-homogeneous backward Kolmogorov equation
Let us consider a time continuous Markov process {&, ,t € [to, t¢]}
& QX to,tg] = D

with generator £

&, = bla, 1) Oa + éA(:p,t) Oy © O
Let now v

v:RY— R
and
L:R*xRy —»R
some smooth functions. Let us then consider the functional
T
Ve, t;T) = Egy {/t diy L(&y, 1) + ¢(€T)}

where as usual

Egi{-} =E{[§{ ==z}

It is instructive to write (5) explicitly as a functional of the transition probability of the process:

T
V(x,t;T) —/ dty /dd:rz L(xa,t2) p(xa, to|x, t) + /dddacg Y(x2) p(ae, T|x, t)
t R R

Proposition 1.1. The function V' defined by (7) satisfies the backward non-homogeneous Kolmogorov equation

(9 + o) V@, :T) + Lz, t) = 0

V(CC, T; T) = 1/1(@

Proof. The proof follows by direct calculation:

WV (x,t;T) = —/ dxo L(x2,t2) p(xa, t|x, t)
Rd

T
+/ dto /ddeL(fBz,tQ) (6tp)(m2,t2]a:,t)+/
¢ R
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The transition probability as a function of the conditioning event satisfies

(0 + L2) (|, t) =0 (10a)
lim p(as, £, 1) = 6 (a3 — ) (10b)

t1ta

Hence we obtain
T
e [ i [ o Les ) plan e + [ dte st pen e | an
t R R

which yields the claim. O

For any t <t; < T we can re-write (7) expression as

t1
V(m,t;T) = / dtg / d(]?g L(:I:Q,tg)p(:lrg,tg‘w,t) +/ ddxl V(:Bl,tl;T) p(wl,tlla:,t) (12)
t R4 Rd
which has the same form as (7) on a shorter time horizon ¢; — ¢ and with the replacement

() = V(6 T) 13)

As the left hand side in (12) does not depend upon ¢; we must have that

0= 8t1V(:c,t;T) = / dJJ1 L(:Bl,tl) p(ml,t1|w,t)
R4

+/ ddxl [(8tlv>(x17t1; T) p<x17t1‘w7t) + V(w17t1; T) (atlp)(wlutllxut)] (14)
R4

The transition probability satisfies as a function of the conditioned even the forward Kolmogorov (Fokker-Planck)
equation

[ — £L)pl(z,t]) =0 (15)
As a consequence a spatial integration by parts in the second integral gives

0= 8t1v(wat; T) = /d ddxl p(3717t1|$7t) [L($1, tl) + atl + Swl] V(ml’tl) (16)
R

which is self-consistently verified owing to (8). A further consequence is

Proposition 1.2. Ler V: R¢ x R, — R solution of (8) such that

¢
B / dt1AE,) : (96, V) ® (06 V) < 00 (17)
to
then the stochastic process
¢
pe=Vignt)+ [ dnL(g, ) 18)
to

is a martingale for all [t,, t].



By Ito lemma we have
Proof.
dpe = dV (€;,t) + L(&;,t) = dt (0, + L¢,) V(& t) + [VA(E,,t) - dwy] - O,V (&151) (19)
The function V satisfies by hypothesis (8) hence
due = [VAE;, 1) - dwe] - 0g, V (&, 1) (20)

which shows that V' is a local martingale. The integrability condition (17) then guarantees that the integral form of
(20) is a stochastic integral well-defined in square mean sense

t
= mo = [ VA, 1) dw] - B, V(E, 1) e
to
for m, an integration constant. Hence in the same mean square sense the expected value of i is conserved
Eur=m, (22)
and similarly for any t, <t <t
to
oy = b, + [ VA, 1) dw]- 0, V(€ 0) = 3)
to
which is the defining property of a martingale. O

The relation between martingales and stochastic integrals is discussed in details in sections 4.3 and 4.6 of [2]. In
appendix 3 we recall the definition and the martingale representation theorem.
2 Hamilton-Bellman-Jacobi equation: an heuristic derivation

Let us now consider a class of diffusion processes over the time horizon [t,, t¢] taking values over a state space S and
with with generator of the form

L, =blx,t;u) 0y + %A(w,t; u) : Oy @ Og (24)

The notation implies that the drift and the diffusion fields depend upon a vector field w. We will refer to w in what
follows as the “stochastic control” of the problem. We set out to determine the functional dependence of u upon
S X [to, t¢] with respect to the control a functional of the process of the form

t
V(x,to;ty) =minEg, {U (&) + / ! dt L (&,,t; u)} (25)
u to

To fix the terminology with will convene to call
e [ the running cost function;
o U the terminal cost function;

e V the value function.



Proceeding in an heuristic fashion, we observe that for any u for which there exists a (non-optimal) diffusion process
in the horizon [t,, tf] we can re-phrase (25) as

V(x,to;ty) = min J(x, to; te, u) (26a)

u

ty
J(x, t;te,u) = / dty /ddle(:Bl,tl) p(x1,t1]x,t) + /ddxl U (x1) p (a1, te|x, t) (26b)
t S S

Note that we suppose that U is independent of w. From the analysis of the previous section we expect that the function
J satisfies the backward Kolmogorov equation (omitting parametric dependencies)

(0 + £2)J (@, 1) + L(z,t) = 0 (27a)

J(w, t;) = Ul(x) (27b)

Suppose now that the set of admissible controls w is smoothly parametrized by a scalar quantity . If indeed (25)
admits a minimum, there must be a value ¢, of ¢,

du
r._ 27 28
u* dE: E=Ex ( )
such that
J (z,t) == (u' - OuJ) (@, t)]c=c, =0 V(z,t) €S X [to, tf] (29)
independently of u’. In order to identify the critical point we can take the variation of (27) which yields
(0 + Lo)J (z,t) + [ (2,t) - Op + A'(x,1) : Op ® Og]J(z,t) + L' (x,t) =0 (30a)
J'(x,t) =0 (30b)
As the equation for .J’ is linear, for arbitrary u we have
te
J(x,t) = / dtq /ddwl {[b/(z,t) - 0 + A'(x,t) : Op @ O] (z,t) + L' (2,t) } pul1, t1] 2, t) (31)
t S

with p,. the transition probability of the optimal process. If the drift and diffusion fields are sufficiently regular, the
system (30) admits an identically vanishing solution for a non-vanishing .J, if the non-homogeneous term in (30a)
vanishes i.e. if

[(Oub)(,1) - Op 4 (OuA) (2, 1) : Op ® Op)J (2, ) + OuL(x,t) =0 (32)

The equation (32) specifies in general the critical values of w. In order to determine the minimizer, we should turn to
the study of the second variation of J. Around a critical point, the second variation must satisfy

(0 + L) J. (2, 1) + [b(2,1) - Op + Al(x,t) : Op @ Ox)J(z,t) + L (x,t) =0 (33a)

J!(x,t) =0 (33b)



which we can re-write as
ty
I (1) = / it /ddxl ([67(@,1) - g + (@, 1) : 0 @ DalJ (@, ) + L@, 0) palar, tilat)  (34)
t S

The very interpretation of p, as transition probability imposes that this quantity must positive definite. It follows that
the second variation of .J is positive definite for an arbitrary variation around the critical point if

V- {[(On ® Oub) (@, 1) - Op + (O @ OuA) (2, 1) : Op ® Og|J (2, 1) + (O @ O L) (x, )} - v >0 (35)

for any v € S. In particular, if drift and diffusion fields are linear in the stochastic control w the condition reduces to
the requirement that the running cost be a convex function of the control itself

V- (Oy ® Oy)L(x,t)-v >0 (36)

for any v € S. The conclusion of this heuristic discussion is that the value function (25) must solve the Hamilton-
Bellman-Jacobi equation

OV (x,t) + min {€aV(x,t) + L(x,t)} =0 (37a)

V(x,ts) = Ul(x) (37b)
Two observations are in order.

e The key point of the above derivation is that we can determine the optimal control by minimizing locally at each
time step the running cost. The Hamilton-Bellman-Jacobi (37a) equation must therefore admit the interpretation
of being the backward Kolmogorov equation of the optimal process.

e The minimum condition in (37a) may admit more than one solution. In such a case, it is necessary to verify
a-posteriori which solution indeed corresponds to the optimum.

o In general, even after finding a unique solution of (37) it is still necessary to verify that the critical value of u
associated to it indeed corresponds to a well-defined diffusion process with generator

1
(Lz)s :=b(z, t;uy) - 0 + iA(a:,t; Uy) : Op ® Op (38)

The conditions that the value function V' must satisfy to pass such self-consistence check are specified by
verification theorems. We will later briefly expound the ideas behind these theorems.

The fact that optimal control of a Markov process stems from a set of local operation is encapsulated in Bellman’s
principle which we can state as the following proposition

Proposition 2.1. An optimal Markov control over an horizon [to, t¢] is specified by the requirement that the value
function be of stationary variation for any sub-interval [t,t¢] t, < t < t; while holding fixed the state at time t.

The following calculation further evinces the self-consistence of the heuristic considerations brought forth to
substantiate Bellman principle . Namely, assuming a smooth dependence of the diffusion over w and using (27a) we
have

A (x,to;ty) = /dewa(wf) p' (xy,tlx, to)

ty
—i—/ dt /dexf {—[(8,5 + L, )] (x4, 1) p (zy, tle, to) + L' (xy,t) p(a:f,t]a:,to)} (39)
to
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We can rewrite this equation as
A (@staity) = [ dnpU ) o (@t t)
S
ty i !
_ {/t dt /Sd 24 (01 + o)) 7] (25.8) p(:cf,t|ac,to)}

t
+/fdt/ddxf{[(at+2mf)J]’ (s, t) + L' (zg,1)} p s, t|,to) (40)
to S

The argument of the third integral vanishes by (30a), whilst after an integration by parts in the second integral we
obtain

A (z,t05tf) = /del’f U (zf) — J (x5, t0)] D (2f, e, 1)

+J/ ($,t0>—/gdd.’lff Jl (wf7tf)p(wf7tf‘wato)

ty /
- {/ dt / dw s (=0 + L8 )p] (y, ta, o) T (=, t)} S
to S
If £ is the generator of a Markov process, the adjoint operation £' specifies the evolution of the probability density

(=0 + &)pe] (5, tlz, t,) =0 42)

It is here worth emphasizing that whilst Ito lemma always implies that £ is a differential operator £', instead, is not
necessarily a differential operator (see e.g. [1] for classical examples). Taking into account the boundary conditions,
the variation finally reduces to

A (z,to;tf) = J (z, 1) (43)

as claimed.

3 Verification theorems and Martingales

Let us consider again the optimization problem (25) and suppose that we know the value function up to a time t5 < #p,
then for any non-optimal choice of the control in the interval [t, t3) we have

to
V(& t) < J(z,t) :=Egy {/ dtq L(Etl,tl; u) + V(EtQ,tg)} 44)
t

This means that the process

t
mzwgw+/wu@mmm 4s)
to

specified by the sum of the V' plus the time integral of the running cost evaluated over a non-optimal protocol defines
a sub-martingale. Namely direct differentiation yields

d/]t =dt [(87& + S[gf*]) V(€t7 t) + L(£t7 t; u):| + [\/K(étv t) : dwt] : aﬁtv(éta t) (46)

Thus we see that the drift vanishes if we set the control w equal to its optimal value u,. In such a case, the sub-
martingale becomes a local martingale. We infer that the verification criterium for deciding that the solution V' of the



Hamilton Jacobi equation (37) specifies indeed the sought value function for the optimal control problem is that the
process

t
= [ VA, 0) - dwn] - 0g, V(g ) 47

is indeed a martingale, see [2] for further details.

Martingale definition

Definition .1. A stochastic process {€,,t € R} is a martingale if for any t it is integrable,
Ef& | < oo (48)

and foranyt; > 0
E {Et+t1\f§£)} =E {& &) =6 a.s. (49)

where F 1(55) is the natural filtration induced by &, (i.e. the information about the process up to time t), and the equality
holds almost surely. It is a sub-martingale if under the same hypotheses

E {£t+t1u:i(55)} =E {§t+t1|€t} > & a.s. (50)
and a super-martingale if
E {€t+t1‘f§)} =E {16} <& a.s. (51)
Any stochastic differential equation without drift e.g.
d§, = A&, 1) - dwy (52)

is said to define a local martingale. It defines a martingale with respect to the filtration of the Wiener process in [0, ¢]
if

t
E/ dt; v - (AAD)(&,,1) v < o0 (53)
0

for any v € R?, (53) being the condition ensuring the existence of the stochastic integral in square mean sense. The
converse of this result is the martingale representation theorem

Theorem .1. Let &, be a martingale with respect to the filtration F3 of the Wiener process such that
E &< Vt<T (54)

Then there exists a unique F'p-adapted process A¢ verifying (53) such that

t
Et = £o +/ Atl ’ dwtl (55)
0

The uniqueness of Ay is required modulo a measure zero set in P x Hjo,¢) where P is the measure over €, and Wo,t) the
Lebesgue measure over [0, t].
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